Tailored low-power cross-polarization under fast magic-angle spinning.

نویسندگان

  • Jean-Philippe Demers
  • Vinesh Vijayan
  • Stefan Becker
  • Adam Lange
چکیده

High static magnetic fields and very fast magic-angle spinning (MAS) promise to improve resolution and sensitivity of solid-state NMR experiments. The fast MAS regime has permitted the development of low-power cross-polarization schemes, such as second-order cross-polarization (SOCP), which prevent heat deposition in the sample. Those schemes are however limited in bandwidth, as weak radio-frequency (RF) fields only cover a small chemical shift range for rare nuclei (e.g. (13)C). Another consideration is that the efficiency of cross-polarization is very sensitive to magnetization decay that occurs during the spin-lock pulse on the abundant nuclei (e.g. (1)H). Having characterized this decay in glutamine at 60 kHz MAS, we propose two complementary strategies to tailor cross-polarization to desired spectral regions at low RF power. In the case of multiple sites with small chemical shift dispersion, a larger bandwidth for SOCP is obtained by slightly increasing the RF power while avoiding recoupling conditions that lead to fast spin-lock decay. In the case of two spectral regions with large chemical shift offset, an extension of the existing low-power schemes, called MOD-CP, is introduced. It consists of a spin-lock on (1)H and an amplitude-modulated spin-lock on the rare nucleus. The range of excited chemical shifts is assessed by experimental excitation profiles and numerical simulation of an I(2)S spin system. All SOCP-based schemes exhibit higher sensitivity than high-power CP schemes, as demonstrated on solid (glutamine) and semi-solid (hydrated, micro-crystalline ubiquitin) samples.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low-power cross polarization in fast magic-angle spinning NMR experiments

0009-2614/$ see front matter 2008 Elsevier B.V. A doi:10.1016/j.cplett.2008.11.089 * Corresponding author. E-mail addresses: [email protected], [email protected] gmx.ch (B.H. Meier). We describe a low-power approach for heteronuclear cross-polarization (CP) at high magic-angle spinning (MAS) frequencies. It is based on second-order CP at the n = 0 Hartmann–Hahn condition. The mechanism for the polarizati...

متن کامل

Recovery of bulk proton magnetization and sensitivity enhancement in ultrafast magic-angle spinning solid-state NMR.

The sensitivity of solid-state NMR experiments is limited by the proton magnetization recovery delay and by the duty cycle of the instrument. Ultrafast magic-angle spinning (MAS) can improve the duty cycle by employing experiments with low-power radio frequency (RF) irradiation which reduce RF heating. On the other hand, schemes to reduce the magnetization recovery delay have been proposed for ...

متن کامل

Cross-polarization phenomena in the NMR of fast spinning solids subject to adiabatic sweeps.

Cross-polarization magic-angle spinning (CPMAS) experiments employing frequency-swept pulses are explored within the context of obtaining broadband signal enhancements for rare spin S = 1/2 nuclei at very high magnetic fields. These experiments employ adiabatic inversion pulses on the S-channel ((13)C) to cover a wide frequency offset range, while simultaneously applying conventional spin-locki...

متن کامل

Low-power solid-state NMR experiments for resonance assignment under fast magic-angle spinning.

Solid-state NMR has evolved in the past decade into a powerful technique for the characterization of biomolecular structure and dynamics. Micro-crystalline globular proteins, amyloid fibrils, and membrane proteins can now be routinely studied using solid-state NMR techniques. This was made possible in part due to the development of 2D and 3D homonuclear and heteronuclear experiments that correl...

متن کامل

Dynamic Nuclear Polarization Efficiency Increased by Very Fast Magic Angle Spinning

Dynamic nuclear polarization (DNP) has recently emerged as a tool to enhance the sensitivity of solid-state NMR experiments. However, so far high enhancements (>100) are limited to relatively low magnetic fields, and DNP at fields higher than 9.4 T significantly drops in efficiency. Here we report solid-state Overhauser effect DNP enhancements of over 100 at 18.8 T. This is achieved through the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of magnetic resonance

دوره 205 2  شماره 

صفحات  -

تاریخ انتشار 2010